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Abstract 
After detailing the terminology employed, the paper 
explains the rationale of choosing stigmergic coordinat-
ion to enhance the problem-solving power of simple 
MAS, emphasizing the engineering advantages (very 
simple entities, unaware of each other). To be 
affordable on usual configurations, a reduced number of 
agents and a problem-class of manageable complexity 
are needed. To be comparable against related work, an 
effectiveness measure is defined and two reference usu-
al algorithms are chosen. All tests apply to the Tra-
velling Salesperson Problem (TSP) solved with variants 
of the Elitist Ant System (EAS). The paper follows two 
paths: searching for local enhancements (based on the 
biological model) and creating a problem-solving me-
thod for TSP (searching for inter-paradigmatic 
synergy). The first path proved useful (from about 45 
algorithm instances tested out, 22 gave relevant results): 
effectiveness is visible (albeit not much) enhanced by 
fine-tuning the EAS. The second (more promising) path 
is based on adding symbolic processing factors 
(adapting the environment and instituting a limited cen-
tral coordination). Since now the added factors are 
controlled externally, quantitative evaluations are 
missing but improvements are apparent. The paper con-
cludes that stigmergic coordination improves effect-
iveness on affordable configurations with simple MAS, 
classical problems and usual benchmarks. 

1. Introduction 
The concept of “stigmergy” is used in its initial meaning 
proposed by Grasse [9], to characterise the type of inter-
action taking place in biological insect societies. (In ob-
serving ant colonies, Grasse identified a coordination 

mechanism, based on the creation and placement of a 
dissipative field of smelling substances – the ant phero-
mones – in the environment; such “stigmas” alter the 
environment for other ants and influence their behav-
iour.) However, especially in the syntagma “stigmergic 
coordination” (SC) related to Multi-Agent Systems 
(MAS), it “describes a form of asynchronous interaction 
and information exchange between agents mediated by 
an "active" environment” [20], or “the production of 
certain behaviour in agents as a consequence of the ef-
fects produced in the local environment by previous 
behaviour” [19] (cited in [21]). In this context: “the 
agents are simple, reactive, and unaware of other agents 
or of the emerging complex activities of the agent 
society; the environment is an important mechanism to 
guide activities of these agents and to accumulate in-
formation about ongoing activities of the whole agent 
society” [20]. Therefore, ants – natural or artificial, a-
like – are too trivial to be genuine agents since they lack 
two fundamental agentsy features: social ability (being 
unable to interact with their peers and with humans) and 
pro-activeness (being unable to manifest teleological 
behaviour by taking initiative – since specialized know-
ledge is the source of goals and initiatives). Thus, they 
behave rather as robots than as agents. Yet, the system 
they belong to is not a “multi-robot” system but a “mul-
ti-agent” one; the marvel is due to the synergistic effect 
of their interaction: beyond the individuals (ant-like 
entities), the team (society) comes out [3] [11]. How-
ever, that is the pre-terminological meaning of 
“synergy”, due to Aristotle: the whole is stronger that 
the sum of its parts. (Hence, at least in this paper, the 
term “synergy” is preferred to the more usual one: “e-
mergent synthesis”.) Thus, SC is not only a research 
field per se, but also a test bed for exploiting inter-para-
digmatic synergy. 



This paper – based on a diploma-work for graduating in 
Computer Science [10], having the co-author as adviser 
– aims at illustrating how SC can better problem-
solving capacities of simple MAS, affordable on usual 
configurations. Its rest is organised as follows:  Section 
2 presents related work. Section 3 shows the rationale 
and the approach. On this ground, the next two sections 
describe search branches: Section 4 deals with local, 
minor, but clear-cut and measurable enhancements, 
while Section 5 examines the less quantifiable 
synergistic effect of some new factors - stemming from 
the symbolic paradigm – adapted to the biological 
model. Section 6 focuses on implementation aspects and 
comments upon the results. Conclusions and intentions 
close the paper. 

2. Related work  
Most basic work regarding SC, as well as its main appl-
ication areas (e.g., adaptive routing in communication 
networks, combinatorial optimisation problems, flexible 
manufacturing systems) was referred to recently in [12] 
[20] [21]. Robots based on the model of desert ants1 are 
discussed in [15] and [22]. Thus, to impair redundancy, 
here is presented only recent work directly related to the 
topics of this paper. 

In all early Ant System (AS) algorithms, ants construct 
(candidate) solutions based on two main components: 
pheromone trails and problem-dependent heuristic 
information. These algorithms have suffered frequent 
modifications in order to improve their efficiency. Thus, 
the AS [6] developed into the Elitist Ant System (EAS) 
[4], because each ant that finds a better solution has the 
chance to deposit more pheromone. Other systems that 
emerged from the AS are the Ant-Q [8] where the depo-
sited pheromone amount is directly proportional to the 
quality of the found solution, the Max-Min Ant System 
(MMAS) [18]. Dynamic TSP problems are approached 
with AS in [7] while the quadratic assignment problem 
is addressed in [17]. 

3. Rationale and approach 
The first reason is obvious: any paradigm still in its syn-
cretic stage is promising for both research and applicat-
ions. Beyond this, there are other reasons – somehow 
interrelated but distinct: a) For ants, it works 
remarkably [9] [19]. b) Almost any biologically inspired 
model has proved to be useful to applied artificial 
intelligence (AI) [1]. c) SC follows the trend of other 

                                                           
1 Cataglyphis fortis. In contrast to most other ant species, they 
do not use pheromones to mark their path; instead, they navi-
gate by path integration and by visual landmarks. 

sub-symbolic paradigms (two well-known instances: 
artificial neural networks and evolutionary algorithms) 
[12]. d) Moreover, it can be regarded as very close to 
the physical-grounding (ethological) paradigm [13] [14] 
(although the agents are extremely simple). e) It offers a 
good test-bed for a (rather heterodox) idea: the strength 
of synergy seems to be proportional not only to the 
scale of parallelism itself (number of entities involved) 
but also to the extent of sub-symbolic depiction [3]. 

From an “Engineering in Intelligent Systems” point of 
view, there are other significant advantages of SC [12] 
[20]: a) Global information is made available locally. b) 
The positive feedback (due to pheromonic trails) allows 
the emergence of global order without global 
coordination. c) No direct agent-to-agent 
communication is needed, creating a threefold benefit 
in: simplicity (no languages, messages, awareness of 
partner agents, etc.), robustness (agents are not coupled, 
computation is off-loaded, and the negative feedback 
provides “forgetting” the fruitless paths), and protection 
(without explicitly conveyed information, 
confidentiality is preserved: a paramount asset for 
military applications). 

Considering the objective and the rationale, the appro-
ach is based on the following premises and criteria: 

a) To be affordable on usual configurations, the “artifi-
cial ant colony” has to be restricted to a reduced number 
of agents2. 
b) To be workable, as well as to allow assessment, the 
undertaking has to avoid starting from scratch (a “tabula 
rasa” stance impairs any genuine evaluation). 
c) Corollary of a) and b): the problem-class chosen has 
to be of manageable complexity (to prevent failure und-
er combinatorial explosion); moreover, it should be a 
familiar “workhorse”. 
d) Practicality entails that the trail-building behaviour of 
ants and their random movement shall be taken only as 
initial model not as inexorable dogma. Explicitly, 
agents, artificial pheromones, and their discrete environ-
ment must not necessarily simulate an ant society; in 
contrast, they shall be a compliant problem-solving tool. 
e) Corollary of d): after “squeezing” the standard algo-
rithms by fine-tuning their parameters (in Section 4), 
the symbolic paradigm is brought in to amend the 
pattern (in Section 5). 

Thus, all tests apply to the (easy to understand but dif-
ficult to solve) Travelling Salesperson Problem (TSP): 
[4] [6] [7] [8] [18]. 

                                                           
2 For a 1.5 GHz processor 200 ants need about 1 second to 
travel through 200 places. 



4. Searching for Stigmergy: Local Enhance-
ments 
To increase effectiveness it has to be assessed. There-
fore, three choices are needed: 

a) Performance Metrics. Two dimensions are chosen: 
optimality (O, expressing the closeness to the optimal 
solution, measured by the ratio between the lengths of 
the shortest and the current path), and simplicity (S, the 
opposite of complexity, measured by the ratio between 
the speeds of the fastest and the current algorithm). To 
start with, the effectiveness measure, E is defined as: 

E = w1 * O  + w2 * S 

where the wi are (still) empirically chosen weighs. 

b) Reference Algorithms. Because of the metrics, the 
two extreme algorithms must be conventional ones (i.e. 
not based on SC), used in operational research. Such al-
gorithms could be the Best-First Algorithm (BFA) 
(starting from every town and choosing the nearest 
town to be the next to be visited) and an Exhaustive 
Algorithm (XA) that determines all solutions. The BFA 
is very fast but the solutions provided are quite far from 
the optimum, while the XA gives always the best 
solution, but with a very low speed. 

c) Stem Algorithm. In the role of a stem cell, this algo-
rithm will spawn all the variants taken into account. 
Hence, it has to be one already proven effective – at 
least according to the proposed metrics. 

The variant chosen for testing is EAS that differs from 
the standard AS on four points: transition rule, phero-
mone-trail update rule, local updates of pheromone 
trails and the use of a candidate list, yielding an increase 
in exploration and a better performance on large 
problems. Having many parameters, this algorithm is 
very flexible and can be fine-tuned for specific map 
configurations. Some of the parameters are: number of 
ants used to solve the problem (m); the influence (α) of 
the pheromone intensity in the transition rule; the dis-
tance between two towns (d); the influence (β) of that 
distance in the transition rule; evaporation speed of the 
pheromone (ρ); pheromone intensity for elitist ants (e); 
the amount of pheromone that an ant deposits (q); the 
pheromone intensity between two towns (τ). 
From those variables, the most sensitive proved to be: α, 
β, ρ and e. Usually a trade-off between α and β has to be 
found in order to achieve the best quality solution and a 
short response time. The importance of the evaporation 
speed of the pheromone (ρ) can be explained as follows: 
a high ρ value could trigger the need to re-explore the 
map, while a low ρ value could lead to the saturation of 

the paths, creating a general confusion in choosing the 
best way. Using elitist ants, the convergence is faster. 

Noteworthy, even if this algorithm shifts away from the 
“pure” SC model, through such parameters as β, e and 
the vector with the towns that an ant has visited (this 
one imposed by TSP itself), it is still rather close to the 
biological model. 

Applying the metrics is straightforward: after finding 
out for which parameters the stem algorithm is most 
sensitive to, these are modified “micro-continually” [2] 
and the path length and speed of each variant are intro-
duced in the expression of E. The results are comment-
ed upon in Section 6 (to be compared to those obtained 
according to the approach taken in the next section). 

5. Searching for Synergy: Outside the Para-
digm  
This section (first of all, its title) requires explanation: 
Why searching for synergy, when SC is intrinsically 
based on synergy? Why mixing further paradigms, 
when the algorithms applied before, already use 
artificial ants differing from the natural ones (e.g., elitist 
ants)? 

Here the approach is very pragmatic, disregarding theo-
retical problems (even basic concepts as SC or synergy 
tend to be dealt with as labels). This involves a strategic 
shift: whereas Section 4 focused on using a (tailored) 
biological model for the problem at hand, Section 5 
aims at creating a problem-solving method. Put bluntly: 
ants do not care about TSP while salespersons have no 
reason to smell pheromones. Thus, since the tech-
nological constraints (mainly, processing power and 
problem complexity) are unavoidable, the only way out 
is to exploit the technological freedoms. These are 
based on symbolic processing, are kept at minimum (to 
carry on the advantages of SC), and are grouped in 
three classes: 

a) Boosting the agents. Artificial ants may be smarter 
than their natural counterparts, tending to become closer 
to agents (e.g., for other kinds of problems, they gain 
full autonomy being implemented as threads; however, 
they will not be genuine agents, since they still will not 
communicate directly.) Indeed, the natural SC is a pro-
cess of self-organization that does not imply structural 
changes, so the future agent behaviour will not be 
different (ants do not change their transition rule – the 
criteria to choose the next town to be visited – from one 
place to another or from one tour to the next). However, 
it is obvious that if an entity changes over time its 
behaviour will improve. Thus, analysing different types 
of maps, it came out that choosing the closest town as 
the next one to be visited, will not always lead to a 



better solution – in some cases, this was even worse – 
whereas ants can choose sometimes less promising 
paths. Hence, the agents used to resolve the TSP are 
able to memorize the towns they have passed through, 
can be aware of the best tour found, and can make deci-
sions accordingly. 

b) Adapting the environment. Albeit having to return to 
their nest (the departure town), artificial ants are not ob-
liged to mark two kinds of paths (towards food sources 
and towards the nest). Hence, the pheromones can con-
vey other kind of information; likewise, the positive/ne-
gative feedback can be adjusted to the current state 
(e.g., when a path is clearly unpromising, evaporation 
can be instantaneous). Thus, artificial ants can mark 
their paths with two kinds of pheromone: their own in-
dividual pheromone and the colony’s pheromone, trying 
to avoid the paths that have already been marked with 
their own pheromone at the previous tour(s). The result 
is a higher map exploration. Another way to achieve a 
better exploration is to “eat away” pheromone on the 
edges just crossed (down to a minimum value) like in 
the Ant Colony System [5]. 

c) Instituting (limited) central coordination. In this res-
pect, the distance to the biological model can be large 
and will probably increase. Indeed, the MAS itself may 
have a vital role in guiding the search. In EAS the MAS 
reveals itself through the graph map (sometimes also in-
cluding non-Euclidian elements for expressing the dis-
tance) and the rewarding for finding better paths. 

To speed up the investigation, the current interface al-
lows external control of the problem-solving process, 
using “user-driven heuristics” [3]. That means to give 
the user the power to guide dynamically the search pro-
cess (i.e. to modify any parameter), after assessing the 
existing partial results. This method proved to be very 
effective despite an important drawback: because of the 
user interference, the speed of the variant cannot be 
measured, and as a result, its effectiveness is evaluated 
subjectively. Fortunately, this problem can be fixed in 
two steps: a) translating the user actions into an inter-
face agent; b) converting this agent into a monitoring 
one (an adequate way to set up flexible central coor-
dination). 

6. Implementation and Results 
Although for TSP the ants are too simple to require 
multithreading, to allow upgrade (i.e. more processing 
power for individual agents), the operating system is 
Windows 2000 (because its pre-emptive scheduling, 
kernel mode, and versatile application programming 
interface, allow affordable multithreading). The reason: 
since agents are intrinsically reactive and “run-time be-
ings”, they must be autonomous, lasting, and context-

sensitive – i.e. interrupt-driven. All tests used the same 
map (benchmark Eil45 [16] with 45 towns and an 
optimal path of 3,006.393 (Euclidian distance) units. 
Because of ease, the program was written at first in 
C++Builder5 but, to gain speed (via dynamic tables), 
another version was written in Delphi6. From the about 
45 algorithm instances tested out, 22 gave relevant re-
sults. The most important are presented below. 

Varying the parameters (Section 4). Parameters α and β 
have a vital role in the ant decision-making. If either α 
or β equals zero, the ants will take into account only the 
distance between the towns (α = 0) or the intensity of 
the pheromone trails (β = 0), leading thus to solutions 
far from optimum. Since these parameters are so 
important, they have to be carefully chosen. The 
optimal values found for the parameters are α = 1, β 
between 5 and 10 covering a vast diversity of map con-
figurations. The simulation results are grouped in 
Figure 1. In the same manner, several simulations have 
been carried out in order to determine the other 
parameters, the optimal values being: e = 5, ρ = 5, q = 
100, and the number of ants (m) equal to the number of 
towns. After fine-tuning the algorithm, simulations were 
carried out and the values for speed (or simplicity, S) 
and optimality (O) determined using the Eil45 
benchmark (with an optimum tour of 3,006.393 units). 

Since the speeds of different algorithms also depend on 
implementation, the S parameter must be determined 
using the algorithm’s complexity formula. The comple-
xities of the examined algorithms are BFA (n2), XA (n!) 
and EAS (m * n * i, where m is the number of ants, n is 
the number of towns, and i is the number of iterations). 
Here n = 45, m = 45  and  i = 23 (because the best solut-
ion was found after completing 23 iterations). Thus, O = 
3006.393 / 3006.393 = 1 and S = 45 * 45 / 45*45* 23 = 
0.04347826. 

For XA, O = 1 (obviously) and S = 8.98052677e-54 (ve-
ry close to zero). As O values are equal in both algo-
rithms (XA and EAS) by comparing the S values it is 
evident (and not surprising) that EAS is better. 

Nonetheless, because EAS does not find always the best 
solution, it was compared also to BFA. For BFA O = 
0.84795737 and S = 1. Choosing w1 = 0.9 (for optimal-
ity) and w2 = 0.1 (for speed), E = 0.863161633 (0.9 * 
0.84795737 + 0.1 * 1), which compared to the E value 
of EAS (0.904347826) is smaller. The reason for choos-
ing these weighs: optimality is much more important 
than speed (indeed, TSP is an optimisation problem). 

Symbolic processing (Section 5). Because of the intrin-
sic heuristic nature of this search branch, it is much 
more difficult to do it systematically. 
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Figure 1: The results achieved by varying alpha and beta parameters 



However, the best sequence seems to be “bca”, i.e. to 
start with changing the environment (it is rather simple 
and the problem itself implies obvious differences 
compared to the ant environment). Boosting the ants is 
the last resort because: 1) At least in the simulation 
stage, each addition has to be multiplied by the number 
of ants before considering its worth. 2) It is sound to use 
the same ants for different problems. 3) Using complex 
agents would impair one of the key aims (achieving 
synergy using a very great number of very simple enti-
ties). Thus, avoiding boosting the agents, the results are: 

- Adapting the environment. Some new rules imposed to 
EAS reads as follows: a) If the ants do not find a better 
solution after N iterations (the search stagnates), then 
the pheromone evaporation (ρ) will constantly be in-
creased until a better solution will be found in a limited 
number of iterations (only then ρ will be reset to its init-
ial value). b) If the ants do not find a better solution 
after N iterations the evaporation speed of the phero-
mone trails (ρ) will constantly be increased and the va-
lue of the parameter α will be constantly be decreased. 
When the ants will find a better solution, the parameters 
will be reset to their initial values. (Of course, other 
kind of rules could be followed, this proving to be a 
good research direction.) 

- Instituting (limited) central coordination. Here two 
main directions can be followed: an auto-coordination 
from the MAS itself and user-driven heuristics. Since at 
this stage, because of user-driven heuristics (see Section 
5), irrefutable results about auto-coordination are still 
missing, they will be presented in a future paper. 

7. Conclusions and intentions 
Since the paper treated the potential of a paradigm and 
one of its problem-solving instances, the review involv-
es both A) general conclusions and B) factual ones. 

A1. Despite being yet in a syncretic stage, stigmergic 
coordination shows an obvious potential as problem-
solving tool, at least in the context of simple MAS. 

A2. Relevant results can be achieved on affordable 
configurations, with simple MAS, classical problems 
and usual benchmarks. 

A3. Synergistic effects can be reached deviating from 
the biological model by adding symbolic processing 
factors. It seems that the effectiveness of simple MAS is 
enhanced firstly adapting the environment and secondly 
instituting some (limited) central coordination. 
Expanding the agents is less promising. 

B1. To assess very many (sometimes quite similar) al-
gorithm variants, a performance metrics is vital (even if 
it is subjective and debatable as the one proposed here).  

B2. In line with the applied metrics, the effectiveness of 
simple MAS in solving TSP, can be visibly (albeit not 
very much) enhanced by fine-tuning the EAS. 

B3. Paradoxically, the most promising improvements 
seem to be reached where quantitative evaluations are 
yet missing, i.e. intruding into the way ants would act. 

B4. This intrusion is carried out most efficiently (but in 
a yet not quantifiable way) through external control. 

The short-range intentions are corollaries: a) improving 
the evaluation formula E; b) finishing the tests re-
garding the control of pheromones and search paths; c) 
speeding up the search by extending the “user-driven 
heuristics” d) developing the interface agent; e) convert-
ing the external control into a monitoring agent. 

The middle-range target is to try stigmergic coordinat-
ion in real-world problems, starting with the manufact-
uring control in a small consumer goods factory. 
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