PANDORA: AN OPEN SYSTEM OF COGNITIVE AGENTS USING PARACONSISTENT LOGIC

Elaini Simoni Angelotti
Tuiuti University of Paraná, Brazil
Computer Science Department
elaini.angelotti@utp.br

Edson Emilio Scalabrin
Pontifical Catholic University of Paraná, Brazil
Computer Science Department
scalabrin@ppgia.pucpr.br

ABSTRACT
This work is part of the Multicheck\(^1\) Project that defines an architecture of cognitive and independent agents for the automatic treatment of handwritten Brazilian bank checks. The concept of autonomous agents allows us to organize the application knowledge and brings from this approach several own benefits. The choice of this approach is supported in a triple hypothesis. First, the nature of the problem in question allows decomposition in well-defined tasks, and each of them can be encapsulated in an independent agent. Second, the natural capability of interaction of the agents makes the check treatment process more robust, solving situations apparently difficult. Third, the natural parallelism between the agents can contribute to implement an application with high performance.

Keywords: Autonomous Agent, Paraconsistent Logic, Task Distribution.

1. INTRODUCTION

In a bank environment, the manual verification of checks by employees, in spite of being a trivial task, can cause some problems such as: technical incapability, person in charge’s ability, delay in accomplishing tasks, etc. The automation allows a faster and more reliable processing of the task, offering reduction on costs as well as on compensation time. However, the automatic treatment of handwritten checks is a complex problem. The complexity occurs because of the diversity and complexity of the involved knowledge, of the need to reconfigure dynamically a treatment process and of the interaction between experts. The automation process requires the implementation of the operations follow:

- image acquisition;
- suppression of irrelevant information given on the check;
- relevant information location and extraction;
- obtaining of the document logical structure;
- discrimination between the pre-printed and the handwritten information;
- segmentation of each logical field;
- logical data interpretation (date, numerical, literal and signature);
- check analysis for acceptance or rejection.

Clearly, it is a problem which tasks are well defined. However, the implementation of each one requires large computer resources and the sharing of some partial results can be decisive on obtaining a correct interpretation of information on checks.

Therefore, we decided to automate the bank check compensation process, using the concept of autonomous agent. This concept allows us to organize the application knowledge and brings several own benefits of the approach. Such approach was chosen for the following motivations:

- the nature of the problem in question allows a decomposition in well-defined tasks, and each of them can be encapsulated in an independent agent;
- the natural capability of interaction of the agents makes the check treatment process more robust, particularly as their exchanges solve situations which are apparently difficult;
- the possibility of introducing learning and reasoning mechanisms in the agents, allows us to endow them with pro-activated and adaptable behaviors;
- the modular aspect of the agents allows to fight effectively against the complexity of the domain, as well as it permits to develop a system in an incremental way, which means, an open system of agents [13].

Therefore, in a DAI (Distributed Artificial Intelligence) system, because of its distributed and non-synchronized nature, the agents can easily obtain inconsistent information working separately on the same problem. This way, some of these agents must be complex enough to decide how, when and with whom to interact and behave correctly facing contradictory information. The mechanism developed for this purpose uses some of the concepts and operators of paraconsistent logic, which integrate naturally inconsistent information treatment, that cannot be treated through a classic logic [2], [4], and [14].

Empirically, the manual check treatment goes through the interpretation of the numerical and literal

\(^1\) The Multicheck Project is being developed by Pontifical Catholic University of Paraná, Brazil (PUCPR), with the financial support of the Brazilian Government (CNPq), in an international cooperation between l’École de Technologie Supérieure (ETS)/ Canada and PUCPR.
value in an interactive and approximated way, and then through the date and signature verification. In this way and intuitively, the image treatment of the bank check requires specific knowledge to treat each relevant logical field of the document.

The section 2 presents architecture of autonomous agents that takes into account this interaction in a very natural way. The next sections describe the system operation, enhancing the mechanisms of combination and interpretation (or validation) of the information given by the image segments classifiers of a check logical field. It is important to remind that the communication and validation process work together, allowing the agents to exchange beliefs and to reason about them. To conclude, we’ll present other related works and the conclusion of the ours work.

2. ARCHITECTURE

The architecture of the system, is based in the Multicheck Architecture [12] and consists in a group of relatively complex agents turned to the analysis and treatment of handwritten Brazilian bank checks images (Figure 1). In this architecture, four types of agents are defined:

- The segmentation agent identifies extracts and creates a logical model of a check (date, signature, numerical and literal value).
- The recognition agent recognizes the different logical fields extracted from a check (date, signature, numerical and literal value).
- The analysis agent accepts or rejects a check. The task consists in verifying if all recognition agents have either or not given a positive interpretation of the same check. The information is kept in the accepted or rejected check database.
- The manager agent is responsible to monitor the net and decide if an agent should be inserted or removed from the system.

![Figure 1. Architecture of the system](image)

The Figure 1 above, shows the system architecture, as well as the architecture of each of its agents. The ability to recognize patterns is present only in agents: date, signature, numerical and literal. The expertise to interpret and validate the patterns appear in all agents, except in the segmentation agent. The check acceptance or rejection is done by the analysis agent, which validates the information given by every recognition agents. The communication ability is present in all agents and is implemented by the communication module. This module is responsible for the exchange of non-synchronized messages between agents, and for the implementation some basic tasks, such as: the recognition of a performative, the extraction of the message contents and its communication to specialized modules.

It is important to remember that in the implementation of this architecture, there can be several agents implemented with the same competence. This redundancy allows us to aim for several parallel treatments and ensure the balance of the system load [13]. However, the architecture has to have at least six agents (one of each type, except the manager agent) to interpret a check.

In order, to manage the balance of the system load was introduced a manager agent which is responsible to monitor the agents of the net [1]. The main tasks of this agent consists in insert or remove agents from the system when necessary. This decision is taken over the average time spent by one agent to end its calculus over a certain task. The ordered pair \(<i, t>\) correspond to information used by the manager to take its decisions, where \(i\) is any agent and \(t\) is the average time spent by the agent to end its recognition task. For example:

\(<i, t> = \{<\text{signature, 32s}, <\text{date, 30s}, <\text{numeric, 80s}, <\text{literal, 90s}>}\>

The decision of insert or remove a recognition agent is take by the manager agent considering the value \(\beta_i\). The calculation of \(\beta_i\) is obtained of following form:

(a) \(A = \{32s, 30s, 80s, 90s\}\)

(b) For each element of \(A\) do:

\[
\beta_i = \frac{A_i}{N_i} \min(A)
\]

apply rule 01

where \(N_i\) is the agents number of the same type, \(A_i\) is the average time spent by the agent to end its task and \(\min(A)\) is the lower time spent by the agent to end its task.

The manager agent makes its decisions evaluating the following rules [1]:

Rule 01: insert a new recognition agent in the system

If \(\beta_i > 0\)

then insert \(\beta_i\) agents of the type \(A_i\) in the system
Rule 02: insert a new analysis or segmentation agent in the system
If \(\text{numbers of checks in the queue} > 50 \)
then insert a new agent in the system

Rule 03: remove an agent in the system
If \(\frac{A}{N} < \text{Min}(A) \)
then remove the agent that spend more time to end its recognition task

The main advantage of the architecture resides on the autonomous and cognitive agents. These entities are able to communicate and reason about beliefs, turning the interpretation process of a check more robust, beyond allowing the repetition of treatment stages (if necessary). On the other hand, the biggest inconvenient consists in the complexity of the implementation of these agents, especially regarding the management and the treatment of its communication. For example: when and how an agent must communicate an information? When and how an agent must ask for an information? When and how the agents must organize themselves to accomplish the same goal?

3. SCENE

The numerical and literal agents represent the most interesting aspect of this work, because the interpretation of the numerical and literal logical fields can be done in an interactive and approximate way, enabling these agents to exchange beliefs and reason about them. The Figure 2, shows summarized the working process of these agents.

Each recognition process corresponds to the range of classification algorithms applied on a certain logical field. The input of these processes are images and the output are pairs \(\langle n, \mu, v \rangle \), where \(\mu \) represents the favorable evidence and \(v \) the opposite evidence on which \(n \) must be a digit in case of an numerical agent or a word in case of an literal agent. Each set of patterns obtained in a recognition process, is the input for an interpretation process.

The interpretation process of each pattern sets is realized in an interactive way, where, for example, the numerical and literal agents exchange information to solve certain internal conflicts and reach an agreement on the value of the check. These agents communicate their conclusions to the analysis agent, which accepts or rejects the conclusions or interpretations. The decision is based only on favorable and opposite evidential values about information given by recognition agents of the logical fields. The result is obtained by the application of some operators of paraconsistent logic on these values, as well as by using some domain heuristics.

![Figure 2. Segmentation, recognition and validation of logic fields of numerical and literal values](image)

It is important to remember that this work focuses on the validation or interpretation of patterns obtained in recognition process, thereby it only concerns the implementation of the interpretation modules. The evidential values associated to the literal and numerical values were obtained using a automatic data generator. The various modules of recognition are part of the following works: signature [5], date [9], numerical value [3], literal value [8], and segmentation [10].

3.1. Pattern interpretation or validation

The interpretation of a check information is an interactive, approximated and distributed task, therefore it is not limited to a merely local process. Each agent implements this task supported by a high-level communication protocol. This protocol activates responding to the state of each agent and its local knowledge. This knowledge is encapsulated in the decision process of each agent.

During the processing of the check logical field, concepts of evidential logic reasoning were used. In this type of reasoning, described by Subrahmanian [14], two values are associated to a proposition: one of them represents the favorable evidence to the proposition and the other one the opposite evidence. No restriction is set to these values, except that they belong to interval \([0,1]\). In evidential logic favorable and opposite evidences factors aren’t directly related as in the Probability Theory [5].

In summary, the logical field process of a check, follows a determined flow: the recognition module of a certain agent receives an image segment \(\sigma_i \) – which corresponds to a certain logical field of a check – and
decomposes σ_i in various parts σ_{ij}. These parts are classified through highly specialized classifiers. Its output format is $< \sigma_{ij} \in \mathbb{N}_k : [\mu_j ; v_j] >$, where $\mu_j, v_j \in [0, 1]$, and represents coefficients of favorable and opposite evidences in relation to the class that contains a determined σ_i. \mathbb{N}_k are the possible classes.

Given σ_i, the numerical value logical field, σ_{ij}, the values of favorable and opposite evidence of each digit, and χ_{ij}, the degrees of certainty, as shown in Figure 3.

<table>
<thead>
<tr>
<th>σ_{ij}</th>
<th>σ_{ij}</th>
<th>χ_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 1 : [0.96 ; 0.01]> $</td>
<td>$< 2 : [0.96 ; 0.01]> $</td>
<td>0.95</td>
</tr>
<tr>
<td>$< 3 : [0.70 ; 0.25]> $</td>
<td>$< 3 : [0.85 ; 0.36]> $</td>
<td>0.49</td>
</tr>
<tr>
<td>$< 1 : [0.70 ; 0.30]> $</td>
<td>$< 1 : [0.70 ; 0.30]> $</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Figure 3. Image segment, degrees of favorable and contrary evidences, and certainty degrees.

For example, σ_{11} can be read as follows: there is a favorable evidence, up to 96%, that the first digit is “1”, and an opposite evidence, up to 1%, that this first digit is not “1”.

The evidential values interpretation is done through operators and paraconsistent logic concepts, where the evidences are mapped in certainty degrees through the following function [11]:

$$c([\mu_j, v_j]) = \mu_j - v_j = \chi_{ij}$$

a certainty degree χ_{ij} is associated to each classified σ_i segment. χ_{ij} shall be used in various situations, as to define when an agent must communicate with the others. The main valid rules for numerical, literal and analysis agents are:

Rule 04:

- If $\chi_i \in [50, 90]$
 - then asks for information to the literal or numerical agent to increase χ_i

Rule 05:

- If $\min(\chi_i) \in [90, 100]$
 - then sends the result to the analysis agent and other interested agents

Rule 06:

- If $\chi_i \in [0.50]$

Rule 07:

- If the request for a new segmentation is rejected
 - then concludes that the value cannot be recognized and sends the result to every other agents

Rule 08:

- If one of the logical fields cannot be interpreted correctly
 - then rejects check else accepts check

Rule 09:

- If I/S $\in [0\%, 5\%]$
 - then accept check else reject check

[...]

The thresholds presented on the rules above are suppositions. In particular, an agent searches an interaction when he cannot recognize the logical field of its competence, it can decide to:

- ask a segmentation agent to take a new extraction of the logical field;
- ask a recognition agent to validate a belief;
- warn all system agents that the logical field of its competence couldn’t be recognized.

The exchange of information between agents can result in new evidential coefficients, especially through successive combinations, which occur at two different moments:

- during a local segmentation of a given logical field;
- during the interpretation of two or more logical fields that interact with each other.

Phase 1: combination of different segmentations and classifications on the same logical field

The segmentation agent identifies, extracts and creates the logical structure of a check (date, signature, literal and numerical value). In the first place the check global segmentation is realized, immediately followed by a local segmentation. This procedure allows any agent to ask the segmentation agent for a new extraction of a determined logical field. The recognition algorithms are applied to this new extraction, obtaining new evidential values and certainty degrees, which are consequently combined.

On Figure 3, the third, fourth and fifth components of σ_i were recognized with certainty degrees lower than 50%. Applying Rule 06, a new segmentation is requested. Given σ_2, a new segmentation for the numerical value of the logical field, σ_{2j}, the values of favorable and opposite evidence for each digit, and χ_{2j} the certainty degrees, as shown in Figure 4.

<table>
<thead>
<tr>
<th>σ_{2j}</th>
<th>σ_{2j}</th>
<th>χ_{2j}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 1 : [0.99 ; 0.02]> $</td>
<td>$< 1 : [0.99 ; 0.01]> $</td>
<td>0.97</td>
</tr>
<tr>
<td>$< 1 : [0.90 ; 0.11]> $</td>
<td>$< 1 : [0.80 ; 0.23]> $</td>
<td>0.57</td>
</tr>
<tr>
<td>$< 1 : [0.99 ; 0.40]> $</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Second segmentation of the numerical amount, degrees of favorable and contrary evidences, and certainty degrees.

Each σ_{ij} value of the first segmentation (Figure 3) is compared to each σ_{ij} value of the second segmentation (Figure 4). If, for example, σ_{11} and σ_{21} belong to the same class, apply the supreme operator (sup) over χ_{11} \in χ_{21}. The σ_{ij} that owns the highest certainty degree is selected. In this way, for σ_{11} and σ_{21} selects $< 1 : [0.99 0.02], 97% >$. The supreme operator is used because it returns the highest degree of certainty in the selective process. However, if σ_{11} and σ_{21} do not
belong to the same class, it is necessary to begin the process of information exchange between numerical and literal agents to discover which classification is correct. It is important to remind that even if the certainty degree of σ_2 is higher than the certainty degree of σ_1, σ_2 will be selected. This occurs because the literal value is more decisive than the numerical value. In this case, the combination of the results to σ_1 and σ_2 will be showed in Figure 5.

<table>
<thead>
<tr>
<th>(σ_1, σ_2)</th>
<th>(χ_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 : [0.99 ; 0.02] ></td>
<td>0.97</td>
</tr>
<tr>
<td>< 7 : [0.96 ; 0.01] ></td>
<td>0.95</td>
</tr>
<tr>
<td>< 3 : [0.90 ; 0.11] ></td>
<td>0.79</td>
</tr>
<tr>
<td>< 3 : [0.80 ; 0.23] ></td>
<td>0.57</td>
</tr>
<tr>
<td>< 1 : [0.99 ; 0.40] ></td>
<td>0.59</td>
</tr>
</tbody>
</table>

Figure 5. Image segment, degrees of favorable and opposite evidences, and certainty degrees.

These data will be object of validation, rejection, or combination according to the results obtained, for example, by the literal agent.

Phase 2: sharing of partial results from different logical fields

The sharing of partial results is fundamental between literal and numerical agents, especially because they must obtain exactly the same information from different logical fields (codified in different formats). They can also obtain conflicting results and be leaded to interact with each other, to obtain a consistent interpretation and increase its certainty degree.

Assuming that the literal and numerical agents have already concluded independently the Phase 1 and have recognized the same information, so the consequence of Rule 04, of both agents, can be evaluated. The mechanisms used in this work to evaluate the quality of the information of an agent are: disjunction, conjunction, certainty degree and inconsistency/sub-determination degree [2], [11] and [14].

- the disjunction allows values combinations to increase a certainty degree.
- the conjunction allows the evaluation of a set of values over a certain logical field as a whole.
- the certainty degree allows the individual study of each segmented part (σ_i).
- the inconsistency/sub-determination degree allows the mapping in a unique value the inconsistency or sub-determination of the analyzed information.

Disjunction

The disjunction operator (\cup) below, defined in [11], is applied when an agent needs to confirm a hypotheses or reinforce its beliefs about a certain component.

$$[\mu_1, v_1] \cup [\mu_2, v_2] = [\max (\mu_1, \mu_2), \min (v_1, v_2)]$$

where, the evidential factors are: $[\mu_1, \mu_2]$, $[v_1, v_2] \in [0,1]$.

In the example of Figure 5, the certainty degrees of the numerical field three last figures need to be increased, because they are smaller than the certainty degrees obtained by the corresponding literal field (Figure 6).

<table>
<thead>
<tr>
<th>Information obtained by the literal agent by segmentation: σ_1, σ_2</th>
<th>$c(\mu, v_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 : [0.89 ; 0.04] ></td>
<td>0.85</td>
</tr>
<tr>
<td>$< 3 $: [0.90 ; 0.04] ></td>
<td>0.86</td>
</tr>
<tr>
<td>$< 7 $: [0.93 ; 0.06] ></td>
<td>0.87</td>
</tr>
<tr>
<td>$< 3 $: [0.91 ; 0.04] ></td>
<td>0.87</td>
</tr>
<tr>
<td>< 1 : [0.99 ; 0.04] ></td>
<td>0.92</td>
</tr>
</tbody>
</table>

Figure 6. Image segment, degrees of favorable and opposite evidences, and certainty degrees.

Therefore, the numerical agent applies the disjunction operator on the information calculated locally and the information received from the literal agent, obtaining this way the following expressions:

$$[0.90, 0.11] \cup [0.89, 0.04] \cup [0.90, 0.04] \cup [0.93, 0.06] \cup [0.91, 0.04] \cup [0.88, 0.06] = [0.93, 0.04]$$

$$[0.80, 0.23] \cup [0.89, 0.04] \cup [0.90, 0.04] \cup [0.93, 0.06] \cup [0.91, 0.04] \cup [0.88, 0.06] = [0.93, 0.04]$$

$$[0.99, 0.40] \cup [0.89, 0.04] \cup [0.90, 0.04] \cup [0.93, 0.06] \cup [0.91, 0.04] \cup [0.88, 0.06] = [0.99, 0.04]$$

The Figure 7 shows the information obtained after the application of the operator (\cup).

<table>
<thead>
<tr>
<th>Information obtained after the application of the disjunction operator over the local information of the numeric value and the information received from the literal agents</th>
<th>$c(\mu, v_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 : [0.99 ; 0.02] ></td>
<td>0.97</td>
</tr>
<tr>
<td>< 7 : [0.96 ; 0.01] ></td>
<td>0.95</td>
</tr>
<tr>
<td>< 3 : [0.93 ; 0.04] ></td>
<td>0.89</td>
</tr>
<tr>
<td>< 1 : [0.99 ; 0.04] ></td>
<td>0.95</td>
</tr>
</tbody>
</table>

Figure 7. Degrees of favorable and opposite evidences, and certainty degrees after the application of disjunction operator

Conjunction

The conjunction operator (\wedge) below, defined in [11], is applied when an agent needs to obtain a closure value of each amount.

$$[\mu_1, v_1] \wedge [\mu_2, v_2] = [\min (\mu_1, \mu_2), \max (v_1, v_2)]$$

where, the evidential factors are: $[\mu_1, \mu_2]$, $[v_1, v_2] \in [0,1]$.

The conjunction operator permits to generates a unique value for σ_i and χ_i from various values σ_{ij} and X_{ij}. In other words, a unique favorable and opposite evidential value can be obtained, as well as a unique certainty degree for a given field.
For example, in the application of the operator \((\land)\) on the numerical and literal agents local information, it is obtained:

Numerical Agent:
\[
[0.99 \ 0.02] \land [0.96 \ 0.01] \land [0.93 \ 0.04] \land [0.93 \ 0.04] \\
\land [0.99 \ 0.04] = [0.93 \ 0.04]
\]

Literal Agent:
\[
[0.89 \ 0.04] \land [0.90 \ 0.04] \land [0.93 \ 0.04] \land [0.91 \ 0.04] \\
\land [0.88 \ 0.06] = [0.88 \ 0.06]
\]

This information will be sent to the analysis agent in order to interpret the evidential factors obtained for each value.

Inconsistency/Sub-determination (I/S) Degree

The calculation of the degree of I/S, defined in [4], [14] allows to map in a single value the inconsistency or sub-determination of the analyzed information.

\[
I/S = |\mu_i + v_i - 1| \times 100
\]

The calculation agent does this calculation in two stages:
- application of the conjunction operator on the information received by the recognition agents, obtaining in this case: \([0.88 \ 0.06] \land [0.93 \ 0.04] = [0.88 \ 0.06]\)
- the calculation for I/S is: \([0.88 + 0.06 - 1] \times 100 = 6\%

This means that the obtained information – from a given check – has 6\% of I/S. The acceptance or not of the check is submitted to Rule 09 above, defining a 5\% limit established according to statistic calculation on a test base of Brazilian check banks.

Remember that the calculations above are done locally, inside each agent. This implies that the agents should be endowed with communication mechanisms. In summary, these mechanisms include three distinctive phases:
- the settlement of a connection between agents;
- the solicitation and communication of determined information;
- the end of connection.

4. **COMMUNICATION**

The communication in a multi-agent system is fundamental. It requires a common communication language, especially to codify the intentions during a dialog. For this purpose, the KQML language [6], [7], has been adopted: each message represents, intuitively, a part of the dialog between two or more agents.

In this implementation, the cooperation begins by the settlement of connections between knowledge holder agents and the agents able to execute these tasks[1]. For example, the segmentation agent receives a check, segments it and sends it to the analysis agent, which owns the required competence (check analyzing).

Figure 8: Connection between segmentation and analysis agents.

Effectively, the *recruit-one* performative (Figure 8) makes the connection between these agents. The analysis agent, sender of "tell", assumes the responsibility for analyzing the check. This analyzing task will be shared with the other agents of the system. For this, a process of competence recruitment – signature verification, date verification, literal and numerical value recognition – is done by the analysis agent (Figure 9). This process creates other connections between the analysis agent and the other agents. Each sender of a *tell* assumes the responsibility to treat the logic field of its own\% competence. In this process, the agents start working in an individual way and as some partial results start to be obtained, they begin to share them.

Figure 9: Connections for logic fields distribution to be treated

The closure of these connections is done only after the ending of the calculations done by the recognition agents and their communication to an analysis agent. This agent decides (based in the received results) if the check is going to be rejected or not. It is important to remember that the analysis agents are mono-task.

5. **RESULTS**

The tests done to prove the robustness of the system were realized on three different versions of the system:
- The *v1 test* corresponds to check analysis without any interaction between the agents;
- In the *v2 test* the recognition agents interact with a segmentation agent during the check analysis, for example, to request a new segmentation;
- The *v3 test* represents the case where all agents are able to interact;
This graphic shows that the interaction between these agents results in a highly robust treatment process, as the exchanges among the agents can resolve situations which are apparently difficult, or impossible to resolve with a unique expert.

6. OTHER WORKS

In this application domain, Montoliu [10] proposes a solution for the treatment of French bank checks, using the concept of reactive agent. In this proposal, three types of agent are defined:

- base agents, that are the classifiers (e.g. RN, PPV and HMM);
- macro agents, that are entities composed by base agents which are regrouped by specialties (e.g. words global treatment, number treatment);
- meta agents, are agents that combine the results produced by the base agents.

The main advantage of this method is the velocity in which a result can be produced, due to the use of classifiers in cascade. On the other hand, the main inconvenience is the lack of interaction between agents and the absence of intelligence at each agent level. Beyond, there are no interactions between stages of treatment, which makes the check interpretation process, sequential, direct and potentially little robust.

7. CONCLUSION

The treatment of handwritten Brazilian bank checks is a very complex problem and it requires large computing resources to automate them. However, it’s a domain which tasks are very well defined and the tasks encapsulation – signature verification, date verification, numerical and literal values recognition – in independent agents, allows a progressive development of the system, as well as the reuse of these agents in other applications. The interaction between these agents makes the process of checks treatment robust, because the agents have abilities to learn, reason and resolve conflicts. The presence of inconsistent information is frequent in the interaction between literal and numerical agents, because they have to recognize the same information, however codified in different formats. This way, to treat appropriately the inconsistency, were used some concepts and operators of paraconsistent logic allowing.

8. REFERENCES