
Developing a distributed ERP system
based on Peer-to-Peer-Networks and Web Services

Jorge Marx Gómez, Oliver Krüger, Conny Kühne, Daniel Lübke

Department of Computer Science
Technical University of Clausthal

38678 Clausthal-Zellerfeld, Germany
Julius-Albert-Str. 4

Tel: +49-5323-67-18386
Fax: +49-5323-67-11216

{gomez, oliver.krueger, daniel.luebke}@informatik.tu-clausthal.de
ckuehne@iti.cs.uni-magdeburg.de

Abstract

As the business world gets more and more dependent
on digital technology, including information systems
for resource management, even the small- to medium-
sized enterprises have to install and maintain complex
enterprise resource planning (ERP) systems. However,
these are designed as an all-in-one solution, often im-
plementing functionality not needed. Furthermore, ERP
systems like SAP depend on very large-scale infrastruc-
tures like servers and networking technology, which are
very expensive to install and to maintain. Customizing
these large-scale systems to the needs of a small- to
medium-sized business is nearly as expensive as the
customization for a large enterprise and therefore not
affordable for these companies. Because of this, in this
paper we present a design for a distributed ERP system,
which is based on Web Services and peer-to-peer tech-
nology. It is easier to install and to maintain and
cheaper than the traditional solutions.

Keywords: ERP, Web Service, SOAP, Business Com-
ponent, Peer-to-Peer (P2P)

1 Introduction
Today’s enterprise resource planning (ERP) systems are
designed as a system compromised of databases and
application servers which provide all desired functional-
ity through a monolithic application. The whole system
is then adapted to the company’s needs by a complex
process called customization.

But there are several disadvantages of this classical
design of ERP applications:

• High-end computers needed: Application and data-

base servers require high-end hardware, especially
if failover support is needed.

• Customization process is expensive: Highly skilled
people have to go through the whole system and
adapt it to the company’s needs. This is a very
lengthy and expensive process.

• Complex system management: Lots of servers have

to be administrated for which in turn skilled admin-
istrators have to be employed.

By market pressure, small- to medium-sized enterprises
(SME) are forced to deliver highly customized and high
quality products. Thus the use of ERP systems is neces-
sary. However, these enterprises do not have the budget
for installing, customizing and maintaining complex
ERP systems.

A solution to this problem is application service provid-
ing (ASP). Service providers host and administer all
equipment associated with the ERP system. In turn, the
enterprises have to move their valuable data to the ser-
vice provider’s data center. Problems of security, espe-
cially trust, have prevented this idea from becoming
successful. The second option are pre-customized sys-
tems, which are addressing the customization process
but require the same complex and expensive mainte-
nance.

Our proposed solution, which we will be outlined here,
is the use of an “out-of-the-box” computer with prein-
stalled software, which will use web services to expand
the functionality of the whole system where needed and
is much cheaper to install and maintain then the already
available solutions without having to move valuable
data to third parties.

2 Business Components
The key element in our approach is a business compo-
nent. A business component (BC) is a component which
offers a specific set of business services from its busi-

ness domain [Tur01]. The three main characteristics of
(business) components are:

• Well-defined interfaces: In order to offer certain

services to its environment this attribute is crucial.
Communication with the outside world depends on
standardized interfaces.

• Reusability: Due to its well-defined interfaces the

BC can be (re-)used in different contexts.

• Ability to be combined: Also due to its well-defined

interfaces BCs can be loosely combined with other
BCs into a business application system to fulfill
complex tasks.

According to [Tur01] BCs pass through a life cycle:

1. Standardizing: First the BC needs to be standard-

ized to get its well-defined interfaces (technically
and domain-related).

2. Development: Standardized BCs can be developed

by different (competing) vendors.

3. Adaptation: BCs require technical and domain-

related adaptation in order to handle implementa-
tion-dependent incompatibilities and to customize
its business services. In an ideal case the expense of
this adaptation is minimal.

4. Composition: Different BCs are composed together

to form a whole ERP system.

5. Evolution: Meaning the adaptation after its installa-

tion. From the users perspective this should not be
necessary. In the case of an inappropriate BC (as-
suming a changing environment) the user should be
able to just replace the BC with another one.

6. De-Installation: If the services of a component are

not needed anymore, the BC is removed from the
business application system.

The idea of this solution is to create a marketplace of
BCs and to place the users (SMEs) to the position to
cover their needs (and only them).

3 What are Web Services?
Right now there is no generally accepted definition of
what a web service really is (see. [Ber03]). Within this
paper we assume the definition of the workgroup “De-
velopment of web service based applications” by the
Gesellschaft für Informatik [GI03]: “Web Services are

self-descriptive, encapsulated software-components,
which are offering an interface for remotely calling their
functionality and can be loosely coupled by the ex-
change of messages. For achieving universal interop-
erability, standard internet technology is used for com-
munication. “

For actually implementing web services, there are many
different concepts, protocols and models available,
which are being standardized by popular institutions,
especially the World Wide Web Consortium (W3C) and
the Organization for the Advancement of Structured
Information Standards (OASIS).

In our proposed solution, following, on XML-based
standards will be used to achieve maximum interopera-
bility and standard-compliance:

• Simple Object Access Protocol (SOAP)

SOAP is a standard light-weight protocol for ex-
changing messages, especially for invoking meth-
ods, between applications. SOAP can be used on
top of many protocols, for example SMTP or
HTTP. Depending on top of which protocol SOAP
is used, the message exchange can be asynchronous
(e.g. by using SMTP) or synchronous (e.g. by using
HTTP). Many toolkits are right now available for
SOAP and it is supported by the many development
environments like J2EE by Sun [Sun03], PHP
[PHP03] or .NET by Microsoft [MS03]. SOAP is
defined by the W3C [W3C03].

• Web Service Description Language (WSDL)
WSDL, as defined by the W3C [W3C03a], is a lan-
guage for describing the capabilities of a specific
web service and propagating its interface for invok-
ing method calls. WSDL descriptions of web ser-
vices are normally generated automatically by the
development environment and then distributed to
all interested parties, e.g. by making them accessi-
ble via the World Wide Web.

• Universal Description, Discovery and Integration
This technique, which is explained in more detail in
[Oas02], is used for retrieving web services proving
a specific needed functionality. For example, UDDI
repositories can be established, in which web ser-
vices can register themselves, including their
WSDL description and their purpose, exposed func-
tionality etc. (see [Bei+02, p. 278]).

The general concept and relationships of these protocols
can bee seen in figure 1.

Fig 1: Web Service protocols and their relationships [IBM03]

4 What are P2P networks?
A Peer-to-Peer-Network (p2p-network), as illustrated in
figure 2, is a set of equally treated nodes (peers) in a
network, which are capable to offer resources to each
other without requiring central coordination. (see
[ScFi03, p. 313]). Milojicic et. al. are using a similar
definition: “The term peer-to-peer (P2P) refers to a
class of systems and applications that employ distrib-
uted resources to perform a critical function in a decen-
tralized manner.” [Mil+02, p. 1].

Fig 2: Example of a peer-to-peer-network [Sri03]

Therefore, the three most important properties of p2p-
networks are (see [ScFi03, S. 313f.] and [Mil+02, S.
12ff.]):

• Resource-sharing: Each peer can act as a server as

well as a client within the p2p-network. It therefore
can access and offer resources from/to other peers.

• Decentralized network: The resource and network
management requires no central instance. Thus no
central control can be imposed on the network.

Consequently, the peers are communicating directly
with each other.

• Autonomy: Peers are able to impose their own secu-
rity policies and to choose when they offer what re-
sources to whom.

Further properties of p2p-networks can be:

• Ad-Hoc-Connections: P2P-networks are a con-

stantly changing environment. Peers can and will
join and leave the network any time they choose to.
Instant messaging networks like ICQ and AOL In-
stant Messenger are good examples for this: As
chatters will dial into the Internet, they will connect
to the network. When they disconnect they will
leave the p2p-network as well.

• Anonymity: P2P-networks can guarantee anonymity
for their users if they are designed accordingly.
Normally messages are then relayed by many peers
so that the destination peer does not know who ini-
tially send the message.

• Distributed Resources: The peers can be utilized
more efficiently because unused resources like
CPU cycles can be offered in the network. This can
be used to improve the Return-On-Investment.

• Failover-Support: The network on the whole is not
affected, if one peer fails. Equivalent resources can
be offered by other peers, resulting in high-
availability of resources.

P2P-Networks can be split up into four categories:

• Distributed Computing: CPU intensive tasks are

distributed to all nodes in the network which are
solving the problem and sending their results back
to the initiator. These networks are a good way for
using otherwise unused CPU cycles on modern
over-sized office computers. An example for this
kind of network is seti@home where radio fre-
quency data is analyzed in the hope of finding a
proof for extraterrestrial life.

• File-sharing: File-sharing p2p-networks are used
for distributing data between the peers resulting in a
large data storage including the storage space of
each peer. Those networks make it possible to ag-
gregate very large amounts of data easily exceeding
the TByte barrier by using standard computers.
Popular examples for this kind of networks are
Napster and Gnutella.

• Collaborative Systems: P2P-networks can be used
for communicating with others, like messaging ser-
vices. Popular examples for these are AOL Instant
Messenger or ICQ.

• Platforms: Platforms are providing a complex sys-
tem for various kinds of services which can be de-
veloped upon them. Examples for this kind of net-
works are Sun's JXTA and Microsoft's .NET My
Services. (see [Mil+02, p. 7f.]).

We are planning to develop a system which fits into the
first and third category: Workload, in terms of process-
ing data, can be distributed to other peers, like doing
optimizations. On the other hand, digital contracts and
data queries can be performed which is collaboration
between corporations.

5 Combining Web Services and

Peer-to-Peer-Networks
Normally, each p2p-network implementation has each
own, unique and special protocol, which is used only
within this network. These protocols may be optimised
and specifically tuned for the given application. How-
ever, designing good protocols is a complicated task.
Furthermore, software which should work with the new
system has to implement its special protocol. Because
we want to uniformly access data and functionality and
want the communication between the systems as easy
and standards-compliant as possible, we will not invent
a “yet-another”-protocol. Instead, we will use web ser-
vices based on SOAP to provide resources and normal
web service clients to use them. No extra protocols are
needed and implementations can utilize existing class-
libraries and development-environments.

The web service offering the needed functionality then
can be retrieved by querying an UDDI directory. This
way any company or any other person can extend our
system by a new feature simply by providing a new web
service implementing the desired functionality. Thus
new business components can easily be added to the
system. Because a specific functionality can be provided
by many service providers, each user of our system is
not reliant on one vendor. In case of technical failure or
dissatisfaction with the provider, a user may easily
switch to another one. This way, a new marketplace for
services is created, where services can be bought and
offered. But another, more traditional marketplace will
be transferred into the p2p-network as well: All suppli-
ers, production companies, sellers and resellers can
participate and compete in this network by exposing
their catalogues and prices, availability dates etc. to
their potential costumers.

6 Building a distributed ERP-
system

6.1 Requirements

The ERP system should be capable of supporting all
resource-specific planning for SMEs, which are trying
to survive in the market by highly customized and high-
quality products. For this reason, the ERP system needs
to be easily adaptable. Furthermore, it needs to be
highly reliable, because very important business proc-
esses are dependant on an ERP system. Because of the
intended users, the system needs to be very cost-
effective and not dependant on an own staff of techni-
cally skilled people for administering and supporting the
system.

6.2 Participants

The participants in this system are companies offering
goods (seller), reselling goods (reseller) and the ones
who are offering specific services for this system, like
special business components (service providers). Every-
one can participate in any role, as long as he installs a
server within his network which is able to access the
required resources for the task. The server will act as a
peer in the p2p-network and needs to expose any func-
tions as SOAP-web services and register them accord-
ingly in an UDDI-directory.

6.3 System Components

Each participant needs to have a peer for accessing the
p2p-network. However, corresponding to the function,
the peer will be implemented. That means that not all
peers on the p2p-network are uniform, but share com-
mon components which are illustrated in figure 3.

Fig 3: Structure of the proposed system

The different roles for participating in the p2p-network
are resulting in different peer configurations:

• User peers: Normal peers will have a database for

storing their data, like catalogue data incl. prices
and further business information. These will be
managed by a classical database management sys-
tem (DBMS). On top of this DBMS, a software will
run, which will register all data and functionality
offered by this user peer into the global UDDI di-
rectory. Then incoming requests from the user or
from an external resource via SOAP-web services
are served. For this, these requests are authenticated
and authorized; thereafter the corresponding data is
collected, processed and returned. The basic busi-
ness logic is installed by default as classical busi-
ness components. However, if requests are issued
from an internal person, which require functional-
ity, which is not available locally, a UDDI lookup
for this functionality is done and the request for-
warded to a service peer offering the desired func-
tionality. The same procedure takes place for data
which is not available locally: If a request needs
data, like warehouse data from a partnering com-
pany, the peer for this partnering company is
looked up via UDDI and then the data is retrieved
from that peer.

• Service peers: Service peers are special peers which

normally do not have persistent storage but offer
functionality to user peers, like optimisation tasks.
Therefore these service peers extend the basic func-
tionality of the user peers by providing classical
business components via a SOAP web service.

• UDDI Directory: A UDDI-directory is needed

beside the peers. It is used for managing all regis-
tered web services and makes it possible to search
for specific functionality or offered goods.

6.4 System deployment

For the users of services, the original ERP users, the
system deployment is very easy:

One server system has to be purchased, which contains
a preinstalled database, basic functionality and the cor-
responding web services for publishing data and making
contracts with other peers. Only the most basic data,
like the company name, products etc. needs to be cus-
tomized.

This system is then hooked to the Internet at the user's
site and is immediately usable.

7 Advantages
Our proposed system and its architecture addresses
directly the mentioned problems: Small- to medium-
sized businesses right now need ERP systems to stay
competitive but cannot afford the classical all-in-one
solutions. However, these can install and use our ERP-
system without spending much money and without the
need to build up expensive technical staff for support.

They simply have to buy one server system which will
act as a gateway to the p2p-network and will query for
the data and will use further web services to extend its
functionality if available.

Availability is assured by the spread of the web services
through the p2p-network, thus if one web service fails,
another may take over.

The web services can access and use their own database,
so the average database size is decreased. Backup and
restore operations are therefore faster and easier to per-
form.

Another side-effect is the blurring between inter- and
intra-organizational integration: If two enterprises want
to cooperate by using the web service-based system, it is
technically not more difficult than joining two business
units this way.

Our system is very flexible, because it mainly consists
of loosely coupled web services which are providing the
desired functionality. Therefore, the system can be eas-
ily extended and customized, simply by adding and/or
using web services. The complex customization process
now becomes an easy subscription to web services.

8 Conclusions and Outlook
The new system and its design are a promising for
small- to medium-sized enterprises. We are right now
involved in implementing the system and will roll it out
at selected sites.

We hope that this way, a new generation of ERP-
systems is born which is easier to install and maintain
than traditional monolithic systems often requiring the
restructuring of a company to work efficiently.

Because the whole system is based on published and
free standards, it is easy for everyone to utilize the sys-
tem: Agents may roam the p2p-network for specific
information and even adapters to other, proprietary
systems are possible.

References

[Bei+02] Beimborn, D.; Mintert, S.; Weitzel, T.: Web
Services und ebXML, Wirtschaftsinformatik, 2002(3):
S. 277�280

[Ber03] Berner Fachhochschule: Web Services im
eGovernment,
http://webservice.iwv.ch/definitionen.htm, August 2003

[Bet01] Bettag, U.: Web-Services, Informatik
Spektrum, Oktober 2001: S. 304

[GI03] Symposium auf der 33. Jahrestagung der GI:
Entwicklung Web-Service-basierter Anwendungen,
http://www.winf.tu-
darmstadt.de/arbeitskreis/symposium.htm, August 2003

[IBM03] SQLI-Techmetrix Group, Web Services,
http://www-903.ibm.com/kr/software/
wbr/webserviceVSeai/webserviceVSeai.html

[Mil+02] Milojicic et. al.: Peer-to-Peer Computing. HP
Labs (HPL-2002-57), Palo Alto, März 2002

[MS03] Microsoft Corporation, Microsoft .NET,
http://www.microsoft.com/net

[Oas02] Organization for the Advancement of Struc-
tured Information Standards (OASIS) (Hrsg.):
UDDI Version 2.04 API
Specification,http://www.uddi.org/pubs/ProgrammersA
PI-V2.04-Published-20020719.htm, Juli 2002

[PHP03] The PHP Group, PHP: Hypertext Pre-
processor, http://www.php.net/

[ScFi03] Schoder, D.; Fischbach, K.: Peer-to-Peer-
Netzwerke für das Ressourcenmanagement.
Wirtschaftsinformatik, 2003(3): S. 313�323

[Sun03] Sun Microsystems, Java 2 Platform, Enterprise
Edition, http://java.sun.com/j2ee/

[Tur1] Turowski, Klaus: Fachkomponenten:
komponentenbasierte betriebliche Anwendungssysteme,
Magdeburg, Univ., Fak. für Informatik, Habil.-Schr.,
2001

[W3C03] World Wide Web Consortium (W3C) (Hrsg.):
Simple Object Access Protocol (SOAP) 1.1,
http://www.w3.org/TR/SOAP/. August 2003

[W3C03a] World Wide Web Consortium (W3C)
(Hrsg.): Web Services Description Language (WSDL)
1.1, August 2003

[Sri03] Kay Sripanidkulchai: Peer-to-Peer Content Dis-
tribution, http://www-
2.cs.cmu.edu/~kunwadee/research/p2p/links.html, April
2003

	Introduction
	Business Components
	What are Web Services?
	What are P2P networks?
	Combining Web Services and Peer-to-Peer-Networks
	Building a distributed ERP-system
	Requirements
	Participants
	System Components
	System deployment

	Advantages
	Conclusions and Outlook

