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ABSTRACT – This paper introduces the application of 
Bayesian support vector regression (SVR) and 
automatic relevance determination (ARD) methods for 
the selection of relevant features derived from force 
signal for tool condition monitoring (TCM) during face 
milling processes.  

7 primary features used by other researchers are 
considered, including the power spectral density, 
skewness, kurtosis, average and maximum force, root 
mean square of force, and the residual error based on 
the AR1 model. A two-step approach is applied to 
extract the features. In the first step, the 7 primary 
features are derived. And then a moving window is used 
to calculate the mean and variance value of each 
primary feature. As a result, 14 features are obtained 
and fed into the ARD model. Different features have 
been found to be sensitive to two different phenomena, 
micro-chipping and gradual wear. The selected features 
from all the experiments are combined together to make 
them applicable for different cases. 

An additional set of experimental data is used to 
test the generalization capability of the features. The 
comparison between the selected features and the 
rejected ones prove that the selected features are really 
more useful.  Finally, a moving average approach is 
proposed to further process the regression results. And 
fairly good estimation result has been achieved using 
the selected features. 

1. INTRODUCTION 

It is widely acknowledged that tool condition 
monitoring systems are very important to realize the 
fully controlled machines. Many different approaches 
have already been developed by a lot of researchers. 
The early work was focused on the time-series analysis 
methods. Mohri et al. [1] used a very high order 
autoregressive model to detect tool breakage. Altintas 
[2] indicated that the high order model was impractical 
for online implementations due to the burden in 
computing, and presented an AR1 model to do the job. 
The basic idea behind these is to consider the 
theoretical force variation characteristic of milling 

signals. Other researchers began to use neural networks, 
as the theories became more and more popular. Tarng et 
al. [3] used an MLP to sense tool breakage. Tansel et al. 
[4] evaluated both restricted Coulomb energy (RCE) 
and adaptive resonance theory (ART2)-type neural 
networks. In both studies, indictors of tool failure were 
used as inputs to the network. Tarng et al. used the 
variable cutting force, obtained by subtracting the 
median cutting force from the resultant average cutting 
force. Tansel et al. represented the force profile by 10 
values from one single tool rotation through averaging 
the cutting force readings every 36 degree. Kim [5] 
asserted that the mean, maximum, and root mean square 
values of the force signal indicated the tool state very 
well. In addition, power spectral density, skewness, and 
kurtosis have been successfully used as features for 
monitoring turning processes by many researchers, e.g. 
Niu et al [6]. As a result, we think it may also be a good 
practice to investigate them in milling processes.  

All of the features mentioned above have been 
proved useful to represent tool conditions. However, 
few efforts have been made to compare them. Another 
factor pushing us to do such a study is that the smaller 
the feature dimension, the less the time needed to get 
the output of the neural network. Besides, instead of 
just monitoring the status of milling inserts, we attempt 
to estimate wear values in the study. For both the 
purposes of feature selection and tool wear estimation, 
we find that the approach of Bayesian support vector 
regression works very well.   

Support vector machines (SVM) for regression 
(SVR), as described by Vapnik [7], exploit the idea of 
mapping input data into a high dimensional (often 
infinite) reproducing kernel Hilbert space (RKHS). The 
sophisticated relationship between the input and output 
data may have a potential to represent the complicated 
relationships between the wear value and its indicators. 
In addition, the SVR methods have many other 
advantages, including a global minimum solution as the 
minimization of a convex programming problem, 
relatively fast training speed, and sparseness in solution 



representation. However, as pointed out by Tipping [8], 
the traditional SVM methodology also exhibits 
significant disadvantages, e.g. it cannot produce 
probabilistic predictions. The application of Bayesian 
approaches to neural networks, originated by Buntine 
and Weigend [9], MacKay [10] and Neal [11], can 
solve this problem effectively. According to Mackay 
[10], Bayesian probability theory provides a unifying 
framework for data modeling which offers several 
benefits, such as solving the over-fitting problem and 
handling uncertainty in a natural manner. As a result, 
Bayesian support vector regression method, which 
combines SVR and Bayesian approaches together, may 
act as a more powerful estimation tool. 

Based on the Bayesian approaches, MacKay and 
Neal proposed a new method, called automatic 
relevance determination (ARD), which has the 
advantages of lower computational cost and better 
performance. The aim of ARD is to automatically 
determine which of many inputs to a neural network are 
relevant to prediction of the targets. This is done by 
making the weights on the connections out of each 
input unit have a distribution that is controlled by a 
hyperparameter associated with that input, allowing the 
relevance of each input to be determined automatically 
as the values of these hyperparameters adapt to the data 
(Neal [11]). However, the original work by the two 
researchers was mainly based on multilayer perceptrons 
(MLP). 

 According to Williams [12], ARD methods could 
be directly embedded into the covariance function 
between the outputs corresponding to inputs ix and jx  
as follows: 
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where k0>0 denotes the average power of f(x); kl >0 is 
the ARD parameter that determines the relevance of the 
l-th input dimension to the prediction of the output 
variables; kb>0 denotes the variance of the offset to the 
function f(x); and xl denotes the l-th element of the 
input vector x. Note that the expression is the same as 
the Gaussian kernel function of SVR. Therefore, this 
idea can be used to incorporate the ARD approach into 
SVR. 

This paper is organized as follows: SVR algorithm 
is given in the next section; experimental setup and 
feature extraction approaches are discussed in the third 

section; results are presented in the fourth section; and 
finally we summarize the findings with a conclusion. 

2. SUPPORT VECTOR REGRESSION 

2.1 Bayesian Framework for SVR. Chu et al. [13] 
proposed a generalized framework for Bayesian SVR. 
We implement this framework by using a quadratic loss 
function. There are two reasons for choosing this loss 
function. One is because it can lead to an analytical 
expression of the network output; the other reason is 
that it is differentiable up to the second order, which is 
an essential premise to do the model selection. 

In regression problems, a set of training data  
( ){ }RRxxD ∈∈== i

d
iii yniy ,,,,1, K  is collected 

by randomly sampling a function f, defined on Rd. As 
the measurements are usually corrupted by noise, 
training samples can be represented as 

( ) nify iii ,,2,1 K=+= δx                (2) 

where iδ  is a Gaussian noise, given by: 
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where Zs equals ( )( ) ii dlC δδ∫ ⋅−exp , C is a parameter 

greater than zero, and ( )il δ  is the loss function, which 
has the quadratic form: 

( )( )2ii fy x−                                  (4) 

Thus we have ( ) CdCZ iis
πδδ =⋅−= ∫ 2exp . 

The regression aims to infer the function f, or an 
estimate of it, from the finite data set D. In the Bayesian 
approach, we regard the function f as the realization of a 
random field with a known prior probability. The 
posterior probability of f given the training data D can 
then be derived by Bayes’ theorem: 
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where ( ) ( ) ( )[ ]Tnfff xxxf ,,, 21 K= . ( )fP is the prior 
probability of the random field and ( )fDP is the 
conditional probability of the data D given the function 

values f , which is exactly ( )( )∏ =

n
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x . Now the 

standard Gaussian processes (Williams [12]) can be 
used to describe a Bayesian framework. 



We assume that the collection of training data is the 
realization of random variables ( )if x  in a zero mean 
stationary Gaussian process indexed by xi (it is 
applicable to the tool wear data, when the average wear 
value is subtracted from each wear value). The 
Gaussian process is specified by the covariance matrix 
given in equation (1). Thus, the prior probability of the 
functions is a multivariate Gaussian with zero mean and 
covariance matrix as 
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where ( ) Σ22
n

fZ π=  and Σ is a nn× covariance 
matrix given by (1). 

The probability ( )fDP , known as likelihood, is a 
model of the noise, which can be evaluated by 

( ) ( )( ) ( )∏ ∏= =
=−=

n

i

n

i iii PfyPP
1 1

δxfD       (7) 

Introducing (3), (4) into (7), we get  
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Based on Bayes’ theorem (5), prior probability (6), 
and the likelihood (8), the posterior probability of f  
can be written as (according to [10], P(D) is commonly 
ignored) 
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( )( ) ff dSZ ∫ −= exp . The maximum a posteriori (MAP) 

estimation of the function values is therefore the 
minimization of the following optimization problem: 
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Let MPf denote the optimal solution of (10). Then 
the derivative of ( )fS  w.r.t. f should be zero at MPf  , i.e. 
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and let ω be the column vector formed by ωi. Then MPf  

can be written as 
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where Y stands for the column vector formed by iy . 
(12) can also be decomposed into the form 
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is just the Gaussian kernel in classical SVR. 

2.2 Model Adaptation and Feature Selection. Let θ 
be the hyperparameter vector containing the parameters 
in the prior distribution and the likelihood function, i.e.  

{ }Ckkkkk bd ,,,,,, 210 K=θ . The optimal values of 
hyperparameters θ can be inferred by maximizing the 

posterior probability ( ) ( ) ( )
( )D

θθD
Dθ

P
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P = . As we typically 

have little idea of suitable values of θ before training 
data are available, we assume a flat distribution for 
P(θ), i.e., P(θ) is greatly insensitive to the values of θ. 
Therefore, the evidence P(D|θ) can be used to assign a 
preference to alternative values of the hyperparameters 
θ (MacKay [14]), 
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An explicit expression of the evidence P(D|θ) can 
be obtained from an integral over the f-space with a 
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Gradient-based optimization methods are used to 
infer the optimal hyperparameters that maximize this 
evidence function, which is equivalent to minimizing 
the minus log of the function, 
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The gradients are given by: 
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Based on the algorithm above, the SVR and feature 
selection can be conducted as the following: 
1) Assume an initial hyperparameter set θ. 
2) Use the MAP methods to get MPf  . 
3) Use the gradient-based optimization methods to 

optimize parameters; the gradients are given by 
equations (18) to (20). 

4) If the sum square error given by 
( ) ( )MP

T
MP fYfY −⋅− is smaller than the 

predetermined threshold, then end the iteration; 
else return to the second step. 

5) For the function values of the points to be 
estimated, equation (13) is used. 

6) Compare the magnitude of the parameter 
controlling each dimension of the input data with 
another threshold to select the relevant dimensions. 

3. EXPERIMENTAL SETUP AND 
FEATURE EXTRACTION 

3.1 Experimental Setup. The experimental scheme for 
the condition monitoring system of face milling is 

illustrated in Figure 1 and its components are listed in 
Table 1. 

 
Figure 1. Experiment Setup. 

Components 
Makino CNC milling machine with Funuc controller 
EGD 4450R cutter with AC325 inserts (Catalog No.  , 
SDKN42MT) 
ASSAB718HH workpiece 
Kistler 9265B Quartz 3-Component Dynamometer 
Kistler 5019A Multi-channel Charge Amplifier 
NI-DAQ PCI 1200 Board 
Olympus microscope and Panasonic digital camera 

Table 1. Experimental Components. 

The cutting force on the direction normal to 
feeding was captured by the Kistler dynamometer in the 
form of charges, which were converted to voltages by 
the Kistler charge amplifier. The voltage signal was 
sampled by the PCI 1200 board. The sampling rate was 
set to 1000Hz. The flank wear of each individual tooth 
was measured at an interval of 5 tool passes by the 
Olympus microscope, and at each time an average was 
taken from all the individual teeth mounted on the 
cutter. The tool state was observed by the Panasonic 
digital camera. Seven experiments were conducted 
using AC325 inserts on the Makino CNC machine. The 
cutting conditions are listed in the following table. 

Test 
No. 

Spindle 
speed 
(rpm) 

Feed rate 
(mm/min) 

Cut 
depth 
(mm) 

Insert 
No. 

Immersion 
rate 

1 750 300 1 4 Full 
2 1000 200 2 4 Full  
3 1200 100 1 2 Half  
4 1000 200 1 2 Full 
5 1000 200 1 2 Full  
6 900 200 1 2 Full 
7* 900 100 1 2 Full 

Table 2. Cutting Conditions.  
(* Test 7 is used to test the generalization capacity) 

3.2 Feature Extraction. A two-step feature extraction 
procedure was employed in the paper. The force 
samples in a tool revolution were first averaged to 
eliminate the influence of force pulsations between two 
successive tooth periods. The reason for not averaging 
the force signal in every tooth period is that the features 



extracted from such average forces are quite sensitive to 
radial and axial run-out. Then the residual error of every 
force value was calculated based on the AR1 model [2]. 
This set of data together with the average forces formed 
the basis of feature extraction. 

The first step can be shown as the following 
expression 

))(()(' iFiP kk Φ=                           (21) 

where F(i) stands for the ith set of average forces or 
residual errors, which are determined by a moving 
window (MW): 1−+→ MWii . kΦ is the mapping 

function; )(' iP k stands for primary features derived 
from mapping function; k is the kth type of extracted 
features, i.e. power spectral density, skewness, kurtosis, 
average, maximum, root mean square of average forces, 
and the moving average of residual errors. 

Then the primary features were normalized with 
respect to an initial set of feature samples (fresh stage). 
This process is considered to be able to make the 
features less sensitive to the cutting conditions. The 
normalization can be expressed as 
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instances of the kth primary feature. Although the trends 
of the above primary features correlate well to tool 
flank wear, they cannot be reliably used due to the 
severe variation of the features even after the 
normalization preprocessing. Therefore, further 
processing, or the second-step feature extraction, is 
needed for effective tool wear estimation. 

For each normalized primary feature, two 
secondary features were extracted, the mean and 
standard deviation value within a moving window s, 
which can be written as 
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In addition, as the magnitudes of the features differ 
greatly, e.g. the largest one is several hundred times 
larger than the smallest one, scales should be used to 
change all of these magnitudes to comparable levels. In 
this case, the same level of 6 was used. The scale for 
each feature dimension was given by the ratio between 
6 and its magnitude.  

The two-step feature extraction results in 14 
features, xi={mpi, spi, msi, ssi, mki, ski, mmi, smi, mxi, sxi, 
mri, sri, mrei, srei}, respectively representing the mean 
and standard deviation value of the power spectral 
density, skewness, kurtosis, average, maximum, and 
root mean square of the average force and the average 
of the residual error. Figure 2 gives an example of these 
features, which are extracted from the data of Test 1. 
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Figure 2. Features extracted from Test 1. 
(the Unit of the Horizontal Axes is “Second”) 

4. RESULTS 

Fourteen hyperparameters are assigned to the 
fourteen feature candidates respectively.  Following the 
steps (1) to (6), mentioned in Section 2, feature 
selection can be achieved. During the computation, the 
less relevant feature dimensions are effectively 



suppressed as their controlling parameters are 
automatically reduced to zero or much smaller values 
than those of the relevant ones. Two examples are 
shown in the following figures. 

 
(a) 

 
(b) 

Figure 3. Feature selection results of Test 1 and Test 4. 

Figure 3 (a) shows the feature selection result of Test 1, 
in which the tool was gradually worn; (b) is the result of 
Test 4, in which micro-chipping phenomenon occurred. 
The vertical coordinates are the normalized magnitudes 
of the parameters assigned to candidate feature 
dimensions, where the solid bold line represents the 
result of the final results. Note that the power spectral 
density of the force signal is sensitive to Test 4, but not 
to Test 1. The feature selection results of all the 
experiments are listed in Table 3. 

  Test No. Selected Feature Set 
       1 {mm, mk, sk, mre, sre} 
       2 {mm, ss, mk, sk, mre, sre} 
       3 {mm, ss, mk, sk, mre, sre} 
       4 {mp, mm, ss, mk, sk, mre, sre} 
       5 {mp, mm, sk, mre, sre} 
       6 {mm, sk, mre, sre} 

Table 3. Feature selection results of all the experiments. 

The results can be summarized as follows. There 
are slight differences in the ARD feature selection 
manners between the gradually changing force signals 

and the dramatically changing ones. The differences 
mainly focus on whether the features related to the 
power spectral density are relevant or not. In order to 
make the selected feature set applicable for a wide 
range of conditions, we regard all of the features 
appearing in the table as relevant. Thus, we select {mp, 
mm, ss, mk, sk, mre, sre} as the relevant feature set. 

In order to test the generalization capability of the 
SVR algorithm and to prove that the selected features 
are really more relevant than the rejected features, we 
did another experiment, whose conditions were 
different from all the previous experiments. The feature 
samples from Test 1 to Test 6 were used to train the 
regression network, while those of Test 7 were used to 
test it. The 7 selected features were first used in the 
training and testing process. Then the 7 rejected 
features were used to repeat the processes. The results 
are illustrated in the following figures. 

 
(a) 

 
(b) 

Figure4. Comparison of tool wear estimation results. 

Figure 4 (a) shows the results by using the selected 
features; (b) shows those by using the rejected ones. 
Define the averaged absolute error as the sum of all the 
absolute errors (differences between the measured wear 
values and the estimated wear values) divided by the 



total number of estimated points. And define the 
accuracy as the ratio between the averaged absolute 
error and the final wear value. Then the accuracy of the 
first case is 5.6% with an error of 21.5 microns, and that 
of the second case is 9% with an error of 33.8 microns.  
It can be clearly seen from either the two figures or the 
two accuracies that the selected features are really more 
useful than the rejected ones. 

However, even using the selected features the 
estimation results are still not very good. To improve 
the estimation performance, we proposed a moving 
average method. Specifically, we further processed the 
results given by the SVR algorithm (fMP(i)) using the 
following equation 
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where mw is the size of the moving window, whose 
value is 4 in this paper. The idea behind this is to reduce 
the noise added to estimation values. As we assume a 
Gaussian distribution for the additive noise, whose form 
is given in (3) and (4), the estimation error should be 
centered at zero and distribute normally. This situation 
is illustrated in Figure 4 (a), where the estimation values 
oscillate up and down in the vicinities of the true 
values. Moving average methods could be a sufficient 
way to reduce the estimation error, because of the 
mutual cancellation among positive and negative errors. 
Figure 5 illustrates the results after moving average 
processing (the selected features were used). The 
accuracy in this case is 2.9% with an error of 11.1 
microns, which is far better than the original results. 

 
Figure 5. Results after moving average processing. 

5. CONCLUSION 

From the results obtained, it can be seen that 
embedding the ARD concepts into the SVR algorithm 
can effectively suppress the less relevant features by 
automatically reducing the magnitudes of their 

controlling parameters to zero or almost zero. Hence, 
even without any priori knowledge about the relevance 
of features, we can still get good estimation results 
through the ARD embedded SVR algorithm. 
Furthermore, as we continue using this method, we can 
accumulate sufficient knowledge about features that are 
more relevant in a specific application case. 
Consequently, we can discard the irrelevant features 
and just use the relevant ones for later applications. This 
can both enhance the regression performance and 
reduce the time needed for computation. 
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