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Abstract
Automatic Speech Recognition in the presence of
additive background noise is a challenging task. The
‘missing data’ approach to this problem relies on
identifying spectral-temporal regions which are
dominated by the speech source. The remaining regions
are considered to be ‘missing’ and generally dealt with
either by being ignored or imputed using Hidden
Markov Models. In contrast to missing data methods
based on HMMs, connectionist approaches open up the
possibility of making use of long-term time constraints
and making the problems of classification with
incomplete data and imputing missing values interact.
This paper addresses the problem of combining robust
ASR with missing data and pattern completion in a
single Recurrent Neural Network. We report isolated
digit recognition results on a realistic missing data case,
in which the time-frequency regions which are missing
are determined by local Signal-to-Noise Ratio estimates.

1. Introduction
Automatic Speech Recognition in the presence of
additive background noise is a challenging task because
of the mismatch between the acoustic models and
incoming data caused by the noise [16]. Conventional
techniques for improving recognition robustness
(reviewed by Furui [12]) seek to eliminate or reduce the
mismatch, for instance by enhancement of the noisy
speech, by adapting statistical models for speech units to
the noise condition or simply by training in different
noise conditions. Success with these techniques has been
moderate compared to human performance (see for

instance the sessions on Noise Robust Recognition in
Eurospeech 2001).

Missing data approaches have the potential to provide
highly robust recognition for speech corrupted by high
levels of additive noise and make minimal assumptions
about the nature of the noise. They are based on
identifying uncorrupted, reliable regions in the
frequency domain and adapting recognition algorithms
so that classification is based on these regions. 

Initial processes, based on local signal-to-noise
estimates [6], on auditory grouping cues [18], or a
combination [4] define a binary ‘missing data mask’:
ones in the mask indicate reliable (or ‘present’) features
and zeros indicate unreliable (or ‘missing’) features.
When test data is obtained by adding noise to clean
speech, this a priori knowledge can be used to define an
oracle mask (see Figure 1). Performance on the oracle
mask is typically robust to noise levels of 0 dB SNR or
worse [4]. This proof of concept sets an upper bound on
the recognition performance.

Present missing data techniques developed at Sheffield
[4, 6] and elsewhere [9, 21] adapt the prevailing
technique for ASR based on Continuous Density Hidden
Markov Models. In the marginalisation approach,
missing values are ignored (by integrating over their
possible ranges) and recognition is performed with the
reduced data vector which is considered reliable. Data
Imputation is a technique in which missing features are
replaced by estimated values to allow the recognition
process to proceed in normal way. There are several
methods for imputation e.g. unconditional imputation,
conditional imputation [6] and feature compensation



[21]. In the latter, missing data is reconstructed using
statistical information derived from the clean speech and
neighbouring feature vector components.

For the multivariate mixture Gaussian distributions used
in CDHMMs, marginalisation and conditional
imputation can be formulated analytically [6]. For
missing data ASR, improvements in both techniques
follow from using the knowledge that for spectral energy
features the true value of the speech in unreliable data is
bounded between zero and the energy in the
speech+noise mixture [23], [15]. These techniques,
which limit the range of integration over unreliable
feature values, are referred to as bounded
marginalisation and bounded imputation. Missing data
techniques coupled with a ‘soft’ reliable/unreliable
decision produce good performance gains on a standard
connected-digits-in-noise recognition task [4].
Marginalisation is a good approach if we are only
concerned with recognition but imputation can be a
suitable solution for cases where an existing recogniser
is to be used unchanged [21]. Imputation can also be
used as a way of enhancing the speech.

In this paper, we consider a connectionist alternative to
imputation-based missing data techniques. One
motivation is that CDHMMs are generative models
which do not give direct estimates of posterior
probabilities of the classes given the acoustics. Neural
Networks, unlike HMMs, are discriminative models
which do give direct estimates of posterior probabilities

and have been used with success in hybrid ANN/HMM
speech recognition systems [5].

In our previous exploration of this theme [19],
classification and imputation was combined in a single
RNN for robust ASR with missing data. Results were
reported on an isolated digit recognition task for
randomly deleted time/frequency regions in the speech
spectrum. In this paper, we move on to a more realistic
and demanding missing data case [7], in which the time-
frequency regions which are ‘missing’ are determined
by local Signal-to-Noise Ratio estimates. We also
introduce additional output units performing imputation.
This allows us to train our networks on clean speech
with added noise, using the true values of corrupted
features as training targets for the imputation units. 

Use of actual targets for missing values has been
reported by [22] but the RNN architecture in the latter
work supports only pattern completion. We propose a
combined RNN architecture using missing features both
to recover the noise corrupted regions in the spectrogram
and perform a word recognition task.

2. Recurrent neural networks for 
missing data robust ASR

2.1. Classification with Missing Data

Several neural net architectures have been proposed to
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Figure 1: Auditory spectrograms (column 1), oracle reliable data mask (column 2) and SNR mask (column 3) for digit
‘One’ with subway noise at various SNRs (top to bottom: 20 dB, 10 dB, 0 dB)



deal with the missing data case [2], [13], [14]. The
problem is to compute the output of a unit when some of
its input values are unavailable. For marginalisation, this
involves finding a way of integrating over the range of
the missing values. A robust ASR system to deal with
missing data using marginalisation in radial basis
function neural networks has recently been proposed by
Morris et al. [17].

We use RNNs to estimate missing features in the input
vector. RNNs have the potential to capture long-term
contextual effects over time, and hence to use temporal
context to compensate for missing data, which CDHMM
based missing data techniques do not do: the estimated
likelihood of the data at a particular time in a CDHMM
system depends on the observed acoustics and the state
distribution. Our architecture also allows a single net to
perform both imputation and classification, with the
potential of combining these processes to mutual benefit.

2.2. RNN architecture trained using true 
targets for the missing inputs

The RNN architecture we described in [19] was a
modified version of that reported by Gingras & Bengio
[14]. The assumption was that input features were
missing at random, and the technique worked well both
for classification and pattern completion with random
deletions in the training and the test data. However, this
performance was not maintained for realistic deletions
based on estimates of local SNR. Performance was
improved by preventing the network from imputing

values outside the bounds (see section 1), but a more
satisfactory solution is to allow the net to learn about
bounds during training. We can do this by using the true
values of corrupted features as targets during training.

We now make use of a revised RNN architecture,
illustrated in Figure 2. Here, there are additional output
units for imputation. The network is capable of doing
one step ahead imputation efficiently without any help of
bounds during training. It is basically an Elman RNN
[11], where there are fully connected recurrent links
from the past hidden layer to the present hidden layer.

The number of input units depends on the size of feature
vector, i.e. the number of spectral channels (32 channels
in the experiments reported). The number of hidden
units is determined by experimentation (120 in our
experiments). There are output units for each pattern
class and extra units for pattern completion. In our case
the classes are taken to be whole words, so in the
isolated digit recognition experiments we report, there
are eleven output units, for ‘1’ - ‘9’, ‘zero’ and ‘oh’, with
additional 32 output units corresponding to the length of
feature vector.

In training, missing inputs are initialised with their
unconditional means. The RNN is then allowed to
impute missing values for the next frame as the weighted
sum of hidden activation.
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Figure 2: RNN architecture for robust ASR with missing data technique. Broad arrows show full forward and recurrent
connections between two layers. Shaded blocks in the input and output layer indicate missing inputs at time t and the
estimated values at time t+1 respectively, which change at every time step.
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Where  is the missing feature at time t, 
is the activation of hidden unit j at time t-1,  is the
hyperbolic tangent activation function,  indicates
forward links from a hidden unit to the missing input. 

After all the frames of a training example have been
forwarded through the net, the error for both output
classes and the ‘missing’ features is estimated as the sum
squared error between the correct targets (one of n for
the classification units and the clean values for the
imputation units) and the RNN output for each frame.
The error for the reliable or present features is set to
zero. These errors are used to update RNN weights using
back-propagation through time [24].

The recognition phase consists of a forward pass to
produce RNN output for unseen data and imputation of
missing features at each time step. The highest value in
the averaged output vector is taken as the recognised
class.

3. Isolated word recognition 
experiments
Continuous pattern classification experiments were
performed using data from 55 male speakers in the
isolated digits section of the AURORA database [20].
This database contains about 1200 isolated digits from
55 male speakers, where each speaker spoke 2 examples
of the 11 word vocabulary (the digits 1-9, ‘oh’ and
‘zero’). All speech data in the Aurora database is in turn
obtained from the TIDigit database after downsampling
to 8 KHz and filtering with a G712 characteristic.

1000 examples were chosen for training. Recognition
was performed on the isolated digit examples from the
male speakers in Aurora test set A. A validation set of
110 examples was used to control the stopping condition
in training.

Acoustic vectors were obtained from a 32 channel
auditory filter bank [8] with centre frequencies spaced
linearly in ERB-rate from 50 to 3750 Hz. The
instantaneous Hilbert envelope at the output of each
filter was smoothed with a first order filter with an 8 ms
time constant, and sampled at a frame rate of 10 ms.
Finally a cube root compression was applied to the
frame of energy values.

In the experiments we report, the missing data masks in
training were formed by deleting spectral energy
features at random and the nets were trained on clean
speech with deleted features initialised by unconditional
mean. For training, 1/3rd of the training examples had
0% deletions, 1/3rd had 25% deletions and 1/3rd had
50% deletions.

For comparison purpose, we have also trained the RNN
on oracle missing data masks (section 1). The oracle
mask provided ideal conditions for training. Isolated

digits with added noises (the Aurora noise types subway,
car, babble and exhibition hall) were used for this part of
training.

Recognition performance was evaluated on that part of
the isolated digit section of Aurora test set A which has
subway noise added. SNR and oracle masks were
obtained for the noisy speech at SNRs from 20 dB to -5
dB at 5 dB intervals.

4. Results
We chose to train the RNN to impute missing inputs
only with the RNN activation (described in the section
2.2). The baseline systems for the experiments in this
work were:

   • HMM:MARG - is a CDHMM system using
marginalisation based missing data recognition.
This system consisted of eleven whole word HMMs
(‘1’ - ‘9’, ‘oh’, ‘zero’), each with 16 states and 2
mixtures per state, and was trained on clean isolated
digits using HTK [25].

   • RNN:NP & RNN:SS - Baseline RNN systems
trained on clean speech for classification only; and
tested on noisy speech before and after spectral
subtraction respectively.

Two RNNs were trained with missing data in order to
perform recognition with realistic missing data, i.e.
generated by SNR mask criterion.

   • MDRNN1:RNNI - This net used the clean speech
and a random mask during training. Allowing the
net to impute a step ahead randomly deleted features
is an equivalent to the noise injection method [10] in
which white noise is added to training examples in
order to improve generalisation performance.

   • MDRNN2:RNNI - The RNN in this approach was
trained on ratemap features extracted from the
isolated digit portion of multicondition Aurora
database which had noisy examples with subway,
babble, car and exhibition noises added with speech
at SNRs 20 to 5 dB with a difference of 5 dB.
Oracle masks were used during training to decide
which channels have to be imputed. This scheme
was chosen to set a matched training and test
condition compared to ‘MDRNN1:RNNI’, where
the training data was clean with random deletions
and test data was noisy with realistic SNR based
deletions.

4.1. Classification Performance

Classification performance with oracle and SNR masks
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is shown in Figure 3 (a) and 4 (a) respectively for
‘MDRNN1:RNNI’, ‘MDRNN2:RNNI’ and
‘HMM:MARG’. As expected, results with oracle masks
are superior to those for SNR masks in equivalent
conditions. Training with oracle mask
(‘MDRNN2:RNNI’) yields equivalent recognition
performance to that of ‘HMM:MARG’ and is superior to
both the ‘MDRNN1:RNNI’ and the standard RNN with
spectral subtraction (‘RNN:SS’).

The average word error rates (WER) over all SNRs for
missing data RNNs ‘MDRNN1:RNNI’ and
‘MDRNN2:RNNI’ were 16.99% and 17.96%
respectively compared to 19.16% with marginalisation.

4.2. Pattern Completion Performance

In a similar way, Figure 3 (b) and 4 (b) show relative
pattern completion error (calculated only for the features

outside the mask) with oracle and SNR masks
respectively for the missing data RNN and spectral
subtraction. There is clear advantage for imputation by
missing data RNN trained on noisy speech in equivalent
conditions. It is also evident that training with the noisy
speech to impute/predict clean values of the missing
features gives the RNN a better chance to learn
imputation.

5. Conclusion & future work
The RNN architecture described in this paper can deal
with both realistic and random missing patterns during
training and recognition. Training with random deletions
may be more useful to deal with various types of unseen
noises. The RNN also allows the imputed vectors to be
used with standard ASR systems.

Our preliminary experiments suggest that combining
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Figure 3: Performance with oracle masks: (a) classification, RNN compared to HMM, (b) imputation, RNN compared to
spectral subtraction.
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Figure 4: Performance with SNR masks: (a) classification, RNN compared to HMM, (b) imputation, RNN compared to
spectral subtraction.
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classification with the imputation of the same frame
(supplied at the input at time t) rather than the frame at
time t+1 results in better imputation performance. This
confirms similar observations in other domains, [1, 3],
that combining highly-correlated cues, in a neural
network result in better generalisation of the desired
task. This idea needs further investigations.

Another extension is to upgrade this recognition system
for connected digit recognition with missing data,
following the Aurora standard for robust ASR. This will
provide a direct comparison with HMM-based missing
data recognition [4]. In this case we will need to
introduce ‘silence’ as an additional recognition class,
and the training targets will be obtained by forced-
alignment on clean speech with an existing recogniser.
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